Soil Nematodes of Northern Meadows and Agrocoenoses as Bioindicators of the Transformation Degree in Soil Ecosystems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper examines the effect exercised by agricultural intensity on soil nematode communities inhabiting natural meadows, hayfields, and monocrop agrocoenoses in the Republic of Karelia. The diversity of the soil nematode fauna in natural meadows is similar to that in hayfields, but it significantly decreases in agrocoenoses. The abundance of nematodes reaches the highest values in soils of meadows and decreases as land use intensity goes up. Bacterial feeders predominate in the eco-trophic structure of nematode communities in all types of biocoenoses reaching the maximum share in agrocoenoses. The relative abundance of predators and nematodes associated with plants in agrocoenoses is significantly lower compared to natural meadows and hayfields. Ecological indices computed for nematode communities indicate the presence of a stable and multicomponent soil ecosystem in meadows. The CI index reflecting the predominant pathway of organic matter decomposition indicates an active participation of bacteria in the destruction. Values of the SI and CI indices decrease in agrocoenoses, while the EI index increases. Such a ratio between indices specifies simplified food web and a disturbed soil ecosystem in agrocoenoses. Discriminant analysis shows that, of all studied biocoenoses, only agrocoenoses and natural meadows can be differentiated statistically significantly based on differences in the SI index. However, the identified positive effect of latitude on the SI index in agrocoenoses indicates that the application of this parameter to northern ecosystems has some limitations.

About the authors

E. M. Matveeva

Institute of Biology, Karelian Research Centre, Russian Academy of Sciences

Email: anna_sushchuk@mail.ru
Petrozavodsk, Republic of Karelia, Russia

A. A. Sushchuk

Institute of Biology, Karelian Research Centre, Russian Academy of Sciences

Email: anna_sushchuk@mail.ru
Petrozavodsk, Republic of Karelia, Russia

D. S. Kalinkina

Institute of Biology, Karelian Research Centre, Russian Academy of Sciences

Author for correspondence.
Email: anna_sushchuk@mail.ru
Petrozavodsk, Republic of Karelia, Russia

References

  1. Bongers T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition // Oecologia. 1990. V. 83. P. 14–19.
  2. Bongers T., Ferris H. Nematode community structure as a bioindicator in environmental monitoring // Trends in Ecology & Evolution. 1999. V. 14. № 6. P. 224–228.
  3. Ferris H., Bongers T., de Goede R.G.M. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept // Applied Soil Ecology. 2001. V. 18. P. 13–29.
  4. Матвеева Е.М., Сущук А.А. Особенности сообществ почвенных нематод в различных типах естественных биоценозов: информативность параметров оценки // Изв. РАН. Сер. биологич. 2016. № 5. С. 551–560. [Matveeva E.M., Sushchuk A.A. Features of soil nematode communities in various types of natural biocenoses: effectiveness of assessment parameters // Biology Bulletin. 2016. V. 43. № 5. P. 474–482. https://doi.org/10.1134/S1062359016040099]10.1134/S1062359016040099]https://doi.org/10.7868/S0002332916040093
  5. Sushchuk A.A., Matveeva E.M., Kalinkina D.S. Soil nematode communities of the European part of Russia: latitudinal aspect // Russ. J. of Nematology. 2021. V. 29. № 2. P. 200. https://doi.org/10.24412/0869-6918-2021-2-186-203
  6. Wasilewska L. Soil invertebrates as bioindicators, with special reference to soil-inhabiting nematodes // Russ. J. of Nematology. 1997. V. 5. № 2. P. 113–126.
  7. Briar S.S., Jagdale G.B., Cheng Z. et al. Indicative value of soil nematode food web indices and trophic group abundance in differentiating habitats with a gradient of anthropogenic impact // Environmental Bioindicators. 2007. V. 2. Iss. 3. P. 146–160. https://doi.org/10.1080/15555270701590909
  8. Груздева Л.И., Матвеева Е.М. Расширение ареала картофельной цистообразующей нематоды на Северо-Западе России // Труды Центра паразитологии. Т. XLVI: Биоразнообразие и экология паразитов. М.: Наука, 2010. С. 71–80.
  9. Мигунова В.Д., Кураков А.В. Структура микробной биомассы и трофические группы нематод в дерново-подзолистых почвах постагрогенной сукцессии в южной тайге (Тверская область) // Почвоведение. 2014. № 5. С. 584–589. [Migunova V.D., Kurakov A.V. Structure of the microbial biomass and trophic groups of nematodes in soddy-podzolic soils of a postagrogenic succession in the southern taiga (Tver oblast) // Eurasian Soil Science. 2014. V. 47. № 5. P. 453–458. https://doi.org/10.1134/S1064229314050160]https://doi.org/10.7868/S0032180X14050165
  10. Матвеева Е.М., Сущук А.А., Калинкина Д.С. Сообщества почвенных нематод агроценозов с монокультурами (на примере Республики Карелия) // Труды Карельского научного центра РАН. Сер.: Экологические исследования. 2015. № 2. С. 16–32. https://doi.org/10.17076/eco16
  11. Freckman D.W., Ettema C.H. Assessing nematode communities in agroecosystems of varying human intervention // Agriculture, Ecosystems and Environment. 1993. V. 45. P. 239–261.
  12. Háněl L. An outline of soil nematode succession on abandoned fields in South Bohemia // Applied Soil Ecology. 2010. V. 46. P. 355–371.
  13. Pan F.J., Yang L.Y., Wang C.L. et al. Effects of mowing frequency on abundance, genus diversity and community traits of soil nematodes in a meadow steppe in northeast China // Plant and Soil. 2022. V. 473. Iss. 1–2. P. 89–107. https://doi.org/10.1007/s11104-020-04740-9
  14. De Goede R.G.M., Bongers T. (eds.). Nematode communities of northern temperate grassland ecosystems. Giessen: Focus Verlag, 1998. 338 p.
  15. van den Hoogen J., Geisen S., Routh D. et al. Soil nematode abundance and functional group composition at a global scale // Nature. 2019. V. 572. P. 194–198.
  16. Gruzdeva L.I., Matveeva E.M., Kovalenko T.E. Changes in soil nematode communities under the impact of fertilizers // Eurasian Soil Science. 2007. V. 40. № 6. P. 681–693.
  17. van Eekeren N., Bos M., de Wit J. et al. Effect of individual grass species and grass species mixtures on soil quality as related to root biomass and grass yield // Applied Soil Ecology. 2010. V. 45. P. 275–283.
  18. Li Y., Liang S., Du X. et al. Mowing did not mitigate the negative effects of nitrogen deposition on soil nematode community in a temperate steppe // Soil Ecology Letters. 2021. V. 3. Iss. 2. P. 125–133. https://doi.org/10.1007/s42832-020-0048-0
  19. Du Preez G., Daneel M., De Goede R. et al. Nematode-based indices in soil ecology: Application, utility, and future directions // Soil Biology and Biochemistry. 2022. V. 169. P. 108640. https://doi.org/10.1016/j.soilbio.2022.108640
  20. Austin E., Semmens K., Parsons Ch., Treonis A. Granite rock outcrops: an extreme environment for soil nematodes? // Journal of Nematology. 2009. V. 41. № 1. P. 84–91.
  21. Кудрин А.А., Конакова Т.Н., Таскаева А.А. Сообщества почвенных нематод различных тундровых фитоценозов, отличающихся степенью развития кустарникового яруса // Экология. 2019. № 6. С. 419–428. [Kudrin A.A., Konakova T.N., Taskaeva A.A. Communities of soil nematodes of various tundra phytocenoses differing in the development level of the shrub layer // Russ. J. of Ecology. 2019. V. 50. № 6. P. 526–534. https://doi.org/10.1134/S1067413619060092]https://doi.org/10.1134/S036705971906009X
  22. Peneva V., Lazarova S., Elshishka M. et al. Nematode assemblages of hair-grass (Deschampsia spp.) microhabitats from polar and alpine deserts in the Arctic and Antarctic // Species and Communities in Extreme Environment. Sofia – Moscow: Pensoft Publishers & KMK Scientific Press, 2009. P. 419–438.
  23. Vonk J.A., Breure A.M., Mulder C. Environmentally-driven dissimilarity of trait-based indices of nematodes under different agricultural management and soil types // Agriculture, Ecosystems and Environment. 2013. V. 179. P. 133–138. https://doi.org/10.1016/j.agee.2013.08.007
  24. Neher D.A. Role of nematodes in soil health and their use as indicators // Russ. J. of Nematology. 2001. V. 33. P. 161–168.
  25. Song D., Pan K., Tariq A. et al. Large-scale patterns of distribution and diversity of terrestrial nematodes // Applied Soil Ecology. 2017. V. 114. P. 161–169. https://doi.org/10.1016/j.apsoil.2017.02.013
  26. Puissant J., Villenave C., Chauvin C. et al. Quantification of the global impact of agricultural practices on soil nematodes: a meta-analysis // Soil Biology and Biochemistry. 2021. V. 161. P. 108383. https://doi.org/10.1016/j.soilbio.2021.108383
  27. Кудрин А.А., Сущук А.А. Методы исследования сообществ почвенных нематод // Russ. J. of Ecosystem Ecology. 2022. V. 7 (2). https://doi.org/10.21685/2500-0578-2022-2-5
  28. van Bezooijen J. Methods and techniques for nematology. Wageningen: Wageningen University Press, 2006. 112 p.
  29. Yeates G.W., Bongers T., de Goede R.G.M. et al. Feeding habits in soil nematode families and genera: An outlain for soil ecologists // Journal of Nematology. 1993. V. 25. № 3. P. 315–331.
  30. Yeates G.W., Wardle D.A., Watson R.N. Relationships between nematodes, soil microbial biomass and weed-management strategies in maize and asparagus cropping systems // Soil biology and biochemistry. 1993. V. 25. № 7. P. 869–876.
  31. Одум Ю. Основы экологии. Пер. с англ. М.: Мир, 1975. С. 186–187.
  32. Hammer Ø., Harper D.A.T., Ryan P.D. Past: paleontological statistics software package for education and data analysis // Paleontological Electronica. 2001. V. 4 (1). P. 1–9. http://palaeo-electronica.org/2001_1/ past/issue1_01.htm
  33. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing [caйт]. – Vienna, Austria, 2020. URL: http://www.r-project.org/index.html
  34. Háněl L. Recovery of soil nematode populations from cropping stress by natural secondary succession to meadow land // Applied Soil Ecology. 2003. V. 22. P. 255–270.
  35. Wasilewska L. Impact of human activities on nematode communities in terrestrial ecosystems // Ecology of Arable Land. Eds. Clarholm M., Bergstrom L. Dordrecht: Kluwer Academic Publishers, 1989. P. 123–132.
  36. Zhao J., Neher D.A. Soil nematode genera that predict specific types of disturbance // Applied Soil Ecology. 2013. V. 64. P. 135–141. https://doi.org/10.1016/j.apsoil.2012.11.008
  37. Muschiol D., Traunspurger W. Life at the extreme: meiofauna from three unexplored lakes in the caldera of the Cerro Azul volcano, Galápagos Islands, Ecuador // Aquatic Ecology. 2009. V. 43. P. 235–248. https://doi.org/10.1007/s10452-008-9202-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (912KB)
3.

Download (92KB)
4.

Download (57KB)
5.

Download (460KB)

Copyright (c) 2023 Е.М. Матвеева, А.А. Сущук, Д.С. Калинкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies